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AIlarad-A numerical technique has been developed for the determination of stress fields assoicated with
a variety of two-dimensional fracturing problems, The procedure allows the analysis of cracks intersecting
the free surface of a half-space, of branched or blunted cracks, and of infinitely long arrays of periodicaIly
spaced cracks. The technique employs an efficient surface integral method, using the well-known mathema
tical equivalence of cracks and distributions of edge dislocatiolls, New conditions are developed for closing
the set of equations governing cracks intersecting a free surface. based on a consideration of the stresses at
the point of intersection.

INTR'ODUCTION AND FORMULATION
A method for analyzing quasi-static crack-induced stress fields is developed for two·dimen
sional crack configurations. The material is assumed to be homogeneous, isotropic, linearly
elastic, and either infinite or semi-infinite in extent. For the semi·infinite case, the material
occupies the half-space Y~ 0 in a rectangular coordinate system. Any (including an infinite)
number of cracks may be considered and they may be arbitrarily located, The cracks are
piecewise straight and allow the possibility of branch cracks at their tips.

The nomenclature to be used is illustrated by the collection of N cracks shown in Fig. 1. A
particular point on crack n is located absolutely by (x, Y)n = (xo, YO)n +Wn(-sin 'I'n' cos 'l'1t) but
is uniquely identified simply by Wn• Two additional coordinates, (n and In' are defined for each
crack n as (w" - an)/an; these coordinates thus range from -I to +1.

The cracks are represented by continuous distributions of dislocation singularities, as
described by Rice[I]. A single edge dislocation is represented by a Burgers vector bl" equal to
the closed integral of au,!al in the counterclockwise direction around the dislocation (up being
displacement in the p direction and I being distance along the integration path). The "density"
JL,(/) of the normalized dislocation distribution along a crack is defined such that a . JLp(tn) d/"
represents the infinitesimal Burgers vector in the p-direction at point lit. Stresses (Tjk at point
(x, y) due to the normalized unit dislocation in the p-direction (b,la =1) located at point (Xd' Yd)
are given by weU·known influence functions fj([x, Y), [Xd' Yd])[2, 3].

The stress (Tjt at point (x, y) is now given by

(I)

where p takes on values 1,2 to signifiy Burgers vectors in the x· and y-directions. respectively.
The dislocation densities are determined by requiring that the normal and shear tractions on the
crack surfaces equal those specified for the problem. If (TpU.. ) and (T~«.. ) are the specified
normal and shear tractions, respectively, along crack m, then the JL,(/It) must satisfy

(2)

for m =1, 2, ... ,N, Here the normal and shear influence functions are given (using i =v-1)
73



74

by

where
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Fig. L Nomenclature for crack problems.

1na, t) = 2rr~x«, t) +r~yU, t»)

na, t) ![r~x«(, t) - r~y«(, t)) + ir~ya, t).

(3a)

(3b)

(3c)

It is known (e.g. [4)) that the dislocation densities for internal cracks have the form

(4)

where fp(t) is nonsingular and the powers at and a2 depend on the medium involved; the
assumption of homogeneity near an tips (at =a2 =0.5) is used here.

If the relevant influence functions [2, 3) are written in terms of (m and tn, they are all found
to be of the form

(5)

where <p = E/47T(l- Jl2), E = Young's modulus, and jJ Poisson's ratio, for an isotropic
medium; corresponding forms can be found for an anisotropic medium (see references in [3]).
Here gTP is zero for m~ n and is nonsingular when m = n; hjk«(m. tn) is nonsingular unless
m =nand (, t both lie at a free surface.

Combining eqns (2), (4) and (5) gives, for m = ], 2, ... , N,

(6)

where the notation of eqn (3) has been applied to g and h.
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Following a procedure such as that outlined in Appendix 2 of Ref. [5], eqn (6) can be
reduced to the approximate form

(7)

for m =1, 2, ... ,N and r =1,2, ... , Mrn - 1.
Equation (7) is a standard matrix equation in which the dislocation density strengths !p(tll )

are evaluated at the Mil zeroes of TM., the Chebyshev polynomials of the first kind, and the
crack tractions are specified at the Mrn - I zeroes of UM _I> the Chebyshev polynomials of them

N N
second kind. Since eqn (7) gives 2 L (Mm -1) equations for 2 L Mil unknowns, 2N more

m=l 11=1

equations are needed: two more for each crack. The appropriate equations to be used depend
on the type of crack.

Embedded crack
Since a completely embedded crack of length 2a must have a determinate amplitude of

entrapped dislocations, a8p, an additional condition

(8)

provides (for p =1, 2) the two equations needed for each crack.

Surface crack
For a crack which intersects the free surface, eqn (8) cannot reasonably be imposed and

some other conditions must be sought; these have apparently not been extracted before in the
literature. It will be shown that the requirements that Uyy and UXY vanish and that Un remains
finite at the point where the crack intersects the free surface leads to a single condition relating
the values of the x- and y-eomponents of the dislocation density at the free surface. This
condition is satisfied, and satisfactory results are obtained numerically, if the dislocation
density is set equal to zero at the free surface.

To obtain this result, a generic surface crack is considered, as shown in Fig. 2. The
co-ordinates y and w indicate dimensionless distance along the crack from the free surface;
Os (y, w) s 1. Since dislocations which are distant from the point y =0 contribute nothing to
u" and Uxy at that point and produce bounded Un at that point, it is necessary only to consider
the single crack in deriving the desired condition on the free surface dislocation density.

Fig. 2. Generic crack considered in determining equations needed to close numerical scheme for
surface crack.
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The influence functions for stresses at 'Y due to dislocations at ware given in the Appendix.
In the limits 'Y~0 and w ~0 the denominators of the influence functions vanish. Since the
numerators of f~,('Y~O,w~O) and f~,('Y"'O,w ... O) also vanish, these functions are found to
give finite contributions to the stress at 'Y =0; since the numerators of f~( y ~ 0, w ... 0) remain
nonzero, these functions are found to give infinite contributions to the stress at y = O.

Assuming that the crack opening displacements are analytic, their derivatives, the dis
location densities, are also analytic and can be expressed as a power series in w:

'"
f.tp(w) = f.top+~ f.tfJpw/3,

/3=1

The expressions for stresses near the surface are then

p = 1,2.

l
axx<'Y») 2 fl [ ~ ]jf~A y, W»)

lim a,,( y) = lim ~ dw f.top +~ /L/3pw/3 f~,( y, w) .
y->O () y->O p=1 0 /3=1 fP ( )ax, y xy y, W

(9)

The integrals of those terms containing w fJ in the expressions for ayy and a xy ineqn (9) are
all zero for {3 > O. The integrals

I· ild {f~y(y,w)}_ {I~y}
1m w f.top fP ( ) = f.top IP ,

y->O 0 x, y, W xy

(for p = 1,2) are nonzero, namely

(1;y, I;,) =q,B1(tan '1',-1)

(1~y, I;,) = 4>Bz(tan '1',-1)

where B. =- 4'1' cos) '1', Bz=4 cosz'1'('1' sin 'I' - cos '1') from which the stresses follow,

{
a (y)} 2 {IP }lim yy = ~ f.t yy

y->O a xy( 'Y) p=1 Op I~, .

(lOa)

(lOb)

(11)

Since y =0 is a free surface, a,,( 'Y =0) =ax,(y =0) =O. In order to have a continuous stress

state at this point, the dislocation density must satisfy lim a yy ( 'Y) =lim ax, (y) = 0 also. Thus eqn
y->O y->O

(11) requires that

/LOI tan 'I' - f.t02 = o. (12)

The integrals of those terms containing w/3 in the expression for an in eqn (9) are aU finite
for f3 > O. However, the integrals

(13a)

(for p = 1,2) give an infinite contribution to lim axx ( 'Y):
y->O

I':'" =- 4>{B3 tan 'I' + B4[- cot 2'1' + tan 'I' lim In 'Y]}
y->O

(Bb)
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condition which must be satisfied is again that of eqn (12). Thus, the vector of the dislocation
density at the surface contributes only to opening of the crack and not to relative slippage of
the faces.

Equation (12) is satisfied if both JLoI and JLo2 are set equal to zero. Although this is more
strict a condition than eqn (12) requires, it has been found to give the proper results
computationally for the stress intensity factors; it seems to be only one of the many possible
conditions which satisfy eqn (12) that could be chosen to provide the required closure
conditions discussed after eqn (7). In terms of the nomenclature of eqn (7) the two additional
equations for the surface crack are (for 'I' i' 0)

(14)

When 'I' = 0, the infinite integrals from eqn (9) vanish, as do all of the finite integrals except
Il. and I;, which now both become equal to 4q,. Thus, for a surface crack normal to the free
surface,

(15)

The two additional equations for the surface crack perpendicular to the free surface are,
therefore,

JLoI =O'u('Y =0)/4q, JLo2 =O'x,( 'Y =0)/4q, =O. (l6a, b)

Equation (4) indicates that keeping JLoI = ILt(t =-I) finite requires fl(t =-I) =O. Similarly
JLo2 =J.L2(t =-I) =0 gives f2(t =-1) =O. Expressing these conditions in terms of the nomen
clature of eqn (7) again gives the requirements of eqn (14). For all surface cracks, then, the
dislocation densities at the surface are set equal to zero.

Figure 3 compares the values for the stress intensity factors (computed as in eqn 18 below),
obtained using this technique, with the results of Kbrapkov[6], obtained through conformal
mapping. The stress intensity factors are for cracks at various angles to the free surface of a
semi-infinite region subjected to remotely applied shear and normal stresses. The number of
coUocation points used to obtain these results varied from Mt = 10 to M, =150, with larger
angles and larger values of n requiring more points. The agreement with his results is excellent.

It should be mentioned here that an alternative method for reducing eqn (6) to eqn (7) was
tried for surface cracks. The procedure of Refs. (4,5], formally correct when the intervals of
integration are (-1, I), was applied to the dimensionless variables 'Y and w of Fig. 2, giving
integration intervals of (0, I). The advantage in doing this is that the number of traction
equations (two for each 'Y, where r now ranges from I to M/2) is equal to the number of
unknown values for the dislocation densities (two for each WI: where k = 1,2, ... ,M/2).
However, since the influence functions r~, and r~, are both zero for the surface point 'YM12 =0,
the equations for the normal and shear tractions at that point are not independent and an extra
condition, again provided by eqn (12), is needed. The results for this method were found to be
inferior to those of the technique just described (eqns 9-14).

Branch crack
For the case of a branch crack at the tip of an embedded crack, the two cracks must

together contain the <specified amount of entrapped dislocation and a second integral is added to
eqn (8) to account for the dislocations of the branch crack.

The additional two equations to be used for the branch crack should at least ensure the
readily provable result that the stress singularity at the point of crack intersection is less than
that at a crack tip. This could be done by enforcing a continuous distribution of the dislocation
density across the point of intersection, but it was found that somewhat more accurate results
are obtained by settina the amplitude of the singular dislocation density of the branch crack
equal to zero at the point where it intersects the main crack. This leads to the same condition as
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Fig. 3. Comparison of surface crack stress intensity factors obtained using eqns. (7),(14) and (18) with
those of Khrapkov[6). Crack geometry of Fig. 2, Uxx : u~yn.



Thermoelastic fracture solutions-I 79

eqn (14), this time applied to the branch crack. The resulting condition happens to coincide with
that used by Lo [7] but he needs to model only the branch crack, since his influence function
takes into account the boundary condition imposed by the presence of the main crack.

The results of the above procedure are compared with those of Lo in Fig. 4. Agreement is
again very good. Between 20 and 120 collocation points on both the main crack and branch crack
were used in obtaining these results, with larger atab values requiring more points.

Equation (7), along with eqns (8) (or its modified version when a branch crack is present),
and eqn (14) form a complete set of linear equations which can be solved for the {p(tnk). The
stress (J)k at any point (x, y) in the body can then be computed as

(17)

The stress intensity factors K1 and KII are obtained directly from the values of {p at the
crack tip, K1 being proportional to the dislocation density component which tends to open the
crack and KII being proportional to the component tending to cause relative slippage between
the sides of the crack. For instance, for a surface crack having an angle 'I' with the surface
normal (see Fig. 0, the stress intensity factors take the form

(18)

Crack opening displacements are computed by integrating the dislocation densities IJ-p and
using Chebyshev integration formulae [ll]:

[
11T(2k-O] . [11T(2S- 0 ]

x cos 2M
n

sm 2M
n

where Aup denotes the opening displacement in the p-direction.

(19)

INFINITE CRACK ARRAYS

In geometries containing an infinite number of identical cracks which have a common
spacing of s, it is only necessary to solve for one generic crack, since all cracks have the same
dislocation distribution. For example, with the array of cracks lying along the x-axis, the
tractions for the crack m = 0 are, from eqn (7),

(20)

where crack n is located a distance ns along the x-axis from the crack n = O.
For sufficiently large n, say Inl> n*, the influence functions rrk«O" tnt), for a particular r

and k, will depend only on ~, the x-component of the distance between (Or and tnk' The
asymptotic behavior of the influence functions takes the form ~-', as shown in Table 1. The
summation on n in eqn (20) is performed explicitly for Inl:5 n*. The remaining terms are
evaluated by the use of the Euler-Maclaurin summation formula[8, No. 3.6.28J.

The stress intensity factors for infinite arrays of equally-spaced cracks in infinite and
semi-infinite media, subjected to mode I loading, are compared in Fig. 5 with results from Tada et
at. [9J. No more than forty collocation points along the crack were used to obtain the results shown.
Agreement is within the 2% accuracy quoted for the results of Ref. [9J.
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Fig. 4. Comparison of branch crack stress intensity factors with those of LoPl.

Table I. Asymptotic behavior of rft([x, y], [Xd, Yd]) for jgj =
IXd - xl ~ jy ± Ydl. Table gives the values of l for the asymp

totic form r - C<

Infinite body
Semi-infinite body

(free surface at y = 0)

2
1
2
1
1
2

2
:3
4
3
3
4
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Fig. 5, Comparison of stress intensity factors obtained for infinite array of cracks in semi-infinite
medium with those from Tada et al.[9).

CONCLUSIONS

The well-known equivalence of cracks and distributions of edge dislocations have been used
to formulate integral expressions for crack tractions. For two-dimensional problems, ap
proximate integration formulae employing Chebyshev polynomials were used to reduce these

N
equations to a system of 2 I (Mm - 1) linear algebraic equations for the crack tractions in terms of

m=\
N

2 I Mn unknown dislocation densities. For unbranched cracks which are completely embedded,
n=\

expressions for the entrapped dislocations serve to close the set of equations. For a crack
intersecting a free surface, it was found that the dislocation at the point of intersection has only an
opening component and no sliding component. Setting both of these components to zero at the
surface was shown to give values for the stress intensity factors that are virtually identical to those
obtained through conformal mapping[6]. For a branch crack, it was found that setting the
dislocation density nearest the point of intersection equal to zero gives results which agree with
those from other similar numerical techniques [7].

Extension of these procedures to infinite arrays of cracks is straightforward. The infinite
number of cracks is explicitly considered by using asymptotic expresssions for the dislocation
influence functions in conjunction with the Euler-Maclaurin summation formula. The results
for two problems for which previously published results are available compare very well with
those values [9J.
USS Vol. 19. No. I-F
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A listing of the Fortran computer program used to implement the numerical techniques
described in this paper is available in Ref. [!OJ.
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APPENDIX
Edge dislocation influence functions

For any generic surface crack (e.g. as shown in Fig. 2) the stress Up,. at ydue to a normalized unit edge dislocation (bp/a =1)
at w is given by fjk(y, w). Defining Cn = cos (n'l'), and X = l+ 2yw cos ('1') + w2, the influence functions for an isotropic
homogeneous medium are:

f~Ay, w) =~l {~z~; +~ [(2 - CZ)y3 +(3cz)yzw +(3cZ)yw2 + (2- (2)w 31

+~ [(2C4)y4w + (6C2 2(4)y3WZ +(6 - cz)yzw3+ (2C2 - 6)yw4- (2cz)wS]}

f;y(Y, w) = I,bs~ 'I'{y~w +~ [(-C2)y3 +(C2 - 2)yzw +(2 - cz)ywz+ czw31

+ ~[(-2CC 2cz)lw + (4C4 +2cz- 2)y3wZ+(6cz +6)yzw3-(2c4+ 2cz)yw4- (4cz +4)W5
]}

f~,(y, w) = </1~1 {y-~: +~ [(cz)y3+(2+ cz)yzw +(2 + cz)ywz+ (cz)w 31

- ~ [(2C4 + 4cz)y4w + (2C4 +6cz + 12)y3wZ+(6 + 18(2)rzw3 + (4C4 + 2cz + 6)')'11I4 +(2Cz)ws1}

Z ,psin'l'{-2-Cz I 3 Z Z 3f xy(Y'W)=-2- y-w +~[(2+czh +(3cz))' w-(3czhw -(Hcz)w 1

I
+XJ [(2C4+6cz + 4)r4w+(6cz +6)lwz

- (6cz +6)lw3- (2C4 +6cz +4))'W41}

r~h, w) =</1 s~n 'I' {y ~w-~ [(cz)y3 +(2 - cz)lw +(cz - 2)ywZ-(cz)w3
)

I
+XJ[(2c4+6cz+4)y4w +(6cz+ 6)y3"i

-(6cz+6)lw3 -(2C4 +6cz+4)YW41}

nh, w)= </1;1 {y-~: +~ [(cz)y3+(2+ cz)yZw +(2+ (2)')'IIIZ + (C2)w 31

+~[(2C4)lw + (6C2 - 2C4)y3wZ+(6-6cz)rZw3 + (2C2 -6)')'III4_(2cz)ws1}.


